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Quantum Nonthermal Radiation of the
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Quantum nonthermal radiation of a nonstationary Kerr—Newman black hole is
studied by using the Hamilton—Jacobi equation and generalized tortoise
coordinates. It is shown that the positive energy state interlaces with the negative
state in a region near the event horizon, and spontaneous quantum nonthermal
radiation takes place in the overlap region.

1. INTRODUCTION

Since Hawking’s original discovery of black hole thermal radiation by
using techniques of quantum field theory on a given classical background
spacetime,”) quantum thermal radiation by black holes has been studied
extensively in different types of spacetimes.? ® Recently, Jing and Wang®
investigated the Hawking radiation of a nonstationary Kerr—Newman
black hole.

In addition to quantum thermal radiation, there is also important quantum
nonthermal radiation in the spacetimes of the some black holes. In present
paper we study the nonthermal radiation of a nonstationary Kerr—Newman
black hole. The investigation of the nonthermal radiation of the black hole
is interesting because it yields some new properties and includes the results
of some well-known black holes.

2. SPACETIME OF A NONSTATIONARY KERR-NEWMAN
BLACK HOLE

The line element of the nonstationary Kerr—Newman spacetime repre-
sented in advanced Eddington coordinates is as follows"'”:
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ds* =[1 — 2Mr — QH)pp] dv* + 2 dv dr
+2a(2Mr — QH)pp sin’0 dv dd — 2a sin’0 dr d

2

2
—% 49 + [(Q2 — 2Mr)app —rsi:;e“ ] sin0 dd> (1)

where p = —1/(r — ia cos 0) and p is the complex conjugate of p. M(v) and
QO(v) are the mass and charge of the nonstationary Kerr—Newman black hole,
respectively, and they are arbitrary functions of the retarded time coordinate
v. Here a is a constant just as in the Kerr—Newman case.

The contravariant of the metric is given by

—a’ sin®0 pp (r* + a®)pp 0 —app
(r*+ahpp (Mr— Q' —r*—a)pp 0 app
gP'-V = 0 0 = (2)
pp 0
—app app 0  —pp/sin’0

In the following, we first find the event horizon equation for this black
hole, and then study the quantum nonthermal effect in the spacetime.

The event horizon is determined by the null surface condition. From
the null surface condition

wof &f

't = g oxt ox¥ 3)
we have
o\ o\ | (a)
a* sin’ (5’6) + @ +dd+ 0 - 2Mr)(gf) + (B’é)
—2(r* + a2)§‘1§1=0 4)
Ov Or
Introducing the generalized tortoise coordinate transformation'?
_ L
Fo =1+ ok In[r — ru(v, 0)]
Ve =V T Vo (5

0, =6 — 0
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we have
0. _ 2kr —ry) + 1 0
or 2k(r —rg)  Or,
0 _0 ___ry 0
ov  Ov, 2k(r —rp)Or,
0 0 Iy ol

00 00,  2k(r — rm) or, ©)

where ry = OrylOv, ry = Ory/d0. Then equation (4) can be written as

(@ sin® i + (7 + @ + @F = 2MD2kr = ra) + 1P+ 1R

% V*

+ 20> + @*)2k(r — ) + l]fH}(a—(iL) — dk(r — rH){ a* sin’0 fHa—6L

+ r;,(,)—%i + (7 + &)2k(r — ru) + 1] a—ii}a—(ii
RV o\
+ 412 (r — rp)* |:a2 sin’0 (6—6‘2) + (8—%2) :| =0 (7)

On the event horizon surface r = ry, so that we can obtain from (7)
a®sin®0 iy + P+ a* + QF —2Mr) + rid + 20w+ aPrg =0 (8)

This is the equation that the event horizon satisfies. When rxz = 0 and

ry = 0, we have
rE=M* \M2—a2—Q2 9)

The results reduce to the well-known stationary Kerr—Newman black hole
results.

3. THE QUANTUM NONTHERMAL EFFECT

The Hamilton—Jacobi equation governing the motion of a particle with
charge e and mass | in a spacetime with metric tensor g"¥ is given by!'?

g (% B eAu)(;; - eAv) —pr=0 (10)

where S = S(v, r, 0, ¢) is the Hamilton principal function, and A, is the
four-potential in the spacetime.
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Considering the axisymmetry of the nonstationary Kerr—Newman black
hole, we can let

Ay = (Ao, 0, 0, A3) (11)
Substituting (2) and (11) into the Hamilton—Jacobi equation (10), we have

2 2 2
oS oS oS
2 .2 0 2 2 2 20 =2
@ sin'0 (8\1 ) v “ 9 2Mr)( Or ) (89)

2
—L (ﬁ) —2(r* + a2)££+ 2a§a—s

sin®0 | o Ov Or Ov 0¢
osas L L &, .. . as
—2a or 06 2e(a” Ao sin“0 + aAs) o + 2€[(r” + a’) Ay + ads) o
| A 20 2 1,0
ze(sin29+aA0)6¢+a sin’0 e? 435 + neeAg
+2ae’ Ao As + pi(r* + dcos’®) = 0 (12)

Introducing the generalized tortoise coordinate transformation (5) and (6),
we can write equation (12) as

. 2
a2 sin29 i N 5 i
ov, 2k(r — rm) Or,

+ P+ d+ Q- 2M
(it O N okr—rm) o,

s v s, 1 (as)
00, 2k(r — rpy) Or, sin’0 | 0¢

P +a)[58 u 0S| 2kr—rm) + 105

2k(r — ry) + 1&]2

Ov 2k(r — rg) Or, 2k(r —rg)  Or,

ov, 2kr—rmar, |00 2kr —rw) oOr, 00

oS __rg 0S |dS 2k(r —ry) + 1 0S OS
+2a[as_ r as]as_z 2k(r —ry) + 1 0S OS
oS ru Q]

ov, 2k(r — rpy) Or,

- 2€(a2A0 Sln2e + aA3)‘
J_H.)_ LD ) a3 | ==
2k(r I + 1 8S A o 8S

+ 2¢[(r? + a® Ay + ad
Av O + akl = o,

. 1
+a? sin®0 245 + — % A3 + 2ae® AyAs + ;12(r2 + a’cos’0) = 0
sin

(13)
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There exists a Killing vector (6/0¢)” in the spacetime, so that

oS _
2 m  (const) (14)
Let us define
_ oS _as
°T o T, (15)

*

o and / are the energy and the angular momentum of the particle, respectively.
Equation (13) can be reduced to

2
D(s_ri) — 4k(r — rp) E((%i) + [2k(r — r))P R =10 (16)
where
D=d s’ 0+ (P + d® + 0 — 2 MPR2k(r — re) + 11 + (i)’
+2(r* + @)2k(r — r) + Nrn
E=—{a’sin’0 ru0 — rig | + (r> + a)2k(r — ru) + 1o
— amry — al2k(r — rp) + 1)m + e(a®Ap sin’0 + ads)ry
+e[(r* + a®) Ao + ads)2k(r — ry) + 11} (17)

2
R=d*sin’0 o + % + -mze — 2a0m + 2e(a* Ay sin®0 + aAd;)o
sin

A .
—Ze(_L + aAo)m + & sin®0 &* 43 +

2 02

A
sin’0 sin20 ¢
+2ae’* Apds + n(r* + a* cos’0)

The solutions of equation (16) are

57S=M%HJ(E1 \E> - DR) (18)

Both S and 0S/0r, must are real numbers, so that
E*—DR=0 (19)
that is,
(@ sin’0 ry o — ril + (r* + a2k(r — ru) + 1Jo — arum

— a2k(r — ru) + 1lm + e(a® Ao sin®® + ads)ry
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+ e[(r* + a*) Ao + aA2k(r — re) + 1])°

— 2amo + 2e(a’Ay sin®0 + aAd3)m

2
— D[a* sin’® o® + P + ,mz
sin“0

2 2
) e 43
sin’0

Az .
- 28( + aAo)m + @ sin®0 & A4 + — 5
sin“0

+ 2ae* Ayd; + pi(r* + a® cos’0)] = 0 (20)

This is the relation that the energy levels of Dirac particles have to satisfy
in the nonstationary Kerr—Newman spacetime. Let us adopt the equality in
(20). We obtain from (20)

. Th =+ F3 = Ay

o = . 1)

where
Fi = {a* sin®® ry + (r* + a»[2k(r — ru) + 1]}* — Da’ sin’0
Fr = {a* sin®@ ry + (r> + a»[2k(r — ru) + 1)}{—rk [ — amry
— am2k(r — ru) + 1] + e(a® Ao sin®® + ads)ry
+ e[(r? + a) Ao + ad3)[2k(r — ry) + 1]
+ Dlam — e(a* Ay sin®0 + ads))
Fis = {—ri 1 — amry — am[2k(r — ru) + 1] + e(a® Ao sin’0 + ads)ry
+ e[(r* + Ao + ads|2k(r — ry) + 1]}

2
- D|:Z2 + m - 26(_A3_ + aAo)m + & sin’0 243

sin’0 sin’0

!
sin%0

A3 + 2ae* Apds + Pt + & cosze):| (22)
The distribution of the energy levels of the Dirac vacuum is given by
(23)

and

0o=0n (24)
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The forbidden region of the particle energy is
O <0< (25)
The width of the forbidden region is
2
— F\F
Ao = o —@ =2 ~——1= (26)
F
4. DISCUSSION
1. When r — o0, electromagnetic effects can be neglected, and we have
0" = *pu (27)

The distribution of the Dirac energy levels goes to that in the Minkowski
spacetime. The width of the forbidden region is A® = 2.
2. Now let us consider the case near the event horizon ry. When r —>
ry, we have from (17)
lim D =a*sin®0 /f + (rf + a® + O — 2Mry) + rif + 205 + a¥)ru

r=>ryg

This is just the null surface condition (8), so that

lim D=0 (28)
r—>ryg
From (22) and (28), we get
lim (F3 — FiF3) =0 (29)
roryg
_ F
o = lim ©" = lim © = —lim =2
Ty Ty Ty F1

am + amry + Iry — e(a>Ao sin?0 + ad)ry — e[(r¥ + a®) Ay + ads]

(rr + a) + @ sin0 ry

(30)
The width of the forbidden region vanishes at the event horizon,
2 3@ — F\F
lim Ao = lim —1= =) 31)

roryg roryg F 1

This means that there exists a crossing of the positive and negative energy
levels near the event horizon. When o > +p, the particle can escapes to
infinity from the event horizon. Namely, there is radiation from the region
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near the event horizon. This quantum effect is nonthermal. It is independent
of the temperature of the black hole. This is the Starobinsky—Unruh process.
From (30), we find that o depends not only on the evaporation rate
(~rp) and the event horizon shape (~r}) of the black hole, but also on the
four-potential A, in the spacetime. When ry = 0 and r; = 0 we have

am — e[(r + a®) Ay + aA3)]

r%,-i—az

Wy = (32)
This reduces to the stationary Kerr—Newman spacetime result.

In summary, we have studied nonthermal radiation of a nonstationary
Kerr—Newman black hole. The exact expressions of the energy of the positive
and negative states are given. The positive energy state interlaces with the
negative state in a region near the event horizon, and spontaneous nonthermal
radiation takes place in the overlap region.
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